POLIPlibrary for polynomially constrained
| ||
Displaying instances of type robustflows.
Filter by type:status | name | type | classification | vars | nonlin vars |
lin cons |
nonlin cons |
lin nonzeros |
nonlin nonzeros |
sense | best primal | best dual |
robustFlows-5node-A | robustflows | nc|cc|d2 | 27 | 27 | 16 | 1 | 35 | 11 | min | |||
robustFlows-5node-B | robustflows | nc|cc|d2 | 27 | 27 | 16 | 1 | 35 | 11 | min | |||
robustFlows-cap1-A | robustflows | nc|cc|d2 | 22033 | 22033 | 12001 | 1 | 43000 | 11001 | min | |||
robustFlows-cap2-A | robustflows | nc|cc|d2 | 62033 | 62033 | 32001 | 1 | 123000 | 31001 | min | |||
robustFlows-std-16-A | robustflows | nc|cc|d2 | 3465 | 3465 | 2107 | 1 | 6424 | 1707 | min | |||
robustFlows-std-1-B | robustflows | nc|cc|d2 | 3106 | 3106 | 1709 | 1 | 5832 | 1509 | min | |||
robustFlows-std-2-A | robustflows | nc|cc|d2 | 3511 | 3511 | 1912 | 1 | 6644 | 1712 | min | |||
robustFlows-std-3-A | robustflows | nc|cc|d2 | 4485 | 4485 | 2401 | 1 | 8600 | 2201 | min | |||
robustFlows-std-50-A | robustflows | nc|cc|d2 | 9798 | 9798 | 5201 | 1 | 19050 | 4851 | min | |||
status | name | type | classification | vars | nonlin vars |
lin cons |
nonlin cons |
lin nonzeros |
nonlin nonzeros |
sense | best primal | best dual |
robustFlows-std-5-A | robustflows | nc|cc|d2 | 6291 | 6291 | 3301 | 1 | 12200 | 3101 | min | |||
robustFlows-trans-11-A | robustflows | nc|cc|d2 | 21340 | 21340 | 11221 | 1 | 41880 | 10621 | min | |||
robustFlows-trans-11-B | robustflows | nc|cc|d2 | 21340 | 21340 | 11221 | 1 | 41880 | 10621 | min | |||
robustFlows-trans-9-A | robustflows | nc|cc|d2 | 20898 | 20898 | 10801 | 1 | 41200 | 10401 | min |
Status:
instance can be solved within an hour with a general-purpose solver
(to a final gap of at least 0.1%)
instance has been solved (to a final gap of at least 0.1%, possibly by a problem-specific algorithm)
optimal solution to instance is unknown
Classification:
A|BC|D where
A is problem type: c (convex) or nc (nonconvex),
B is type of linear variables (i.e. only appearing in linear terms): b (only binary), i (only binary or general integers), c (also continuous), or 0 if none
C is type of nonlinear variables (i.e. appearing in nonlinear terms): b (only binary), i (only binary or general integers), c (also continuous), or 0 if none, and
D is maximum degree of the polynomials.
© by maintainers | last update LAST_CHANGE | imprint